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Abstract We examine the singlet stability of symmetry adapted, restricted
Hartree-Fock (RHF) solutions and the implied symmetry breaking for various planar,
π-electron systems with conjugated double bonds as described by the semiempirical
Pariser-Parr-Pople Hamiltonian. In particular, we explore the energy and charge-
density waves (CDWs) in various real and hypothetical structures that result by a
systematic deformation of the nuclear framework: we start with a highly symmetric
cyclic polyene CN HN having a nondegenerate ground state (N = 2n = 4ν + 2, ν =
1, 2, . . .), whose sites form a regular N -gon (DNh point group), and proceed to struc-
tures with lower symmetry (D6h , D3h , D2h point groups), or with only the planar
symmetry of the conjugated π-electron system (C1h). The objective of this study is
to explore the phenomenon that could be referred to as a breaking of an approximate
symmetry or an implied symmetry breaking.

Keywords Independent particle model · Hartree-Fock equations · singlet and
triplet stability · Pariser-Parr-Pople Hamiltonian · Planar conjugated systems ·
Cyclic polyenes

1 Introduction

Ever since the molecular orbital (MO) theory eclipsed the valence bond (VB) approach,
thanks to its easier implementation in actual applications, and in spite of many desirable
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properties of the latter (see, e.g., [1]), the Hartree-Fock (HF) approximation became the
most often exploited standard tool in the exploration of the molecular (and atomic [2])
electronic structure, and became almost synonymous with the more general concept
of the independent particle model (IPM). Moreover, the HF approximation represents
the point of departure for most post-HF correlated methods.

The main reason for the precedence of the HF approach over other methods exploit-
ing a single, antisymmetrized-product wave function that characterizes the IPM stems
from the fact that it represents “the best” IPM from the total energy viewpoint, as well
as due to the fact that the HF energy and wave function can be obtained as a solution
of HF equations. These equations represent the necessary and sufficient condition for
the vanishing of the first variation δ(1)E(�) of the mean energy functional

E(�) = 〈�|H |�〉/〈�|�〉, (1)

within the manifold of the IPM wave functions |�〉,

� = (1/
√

N !) det‖ψ1ψ2 · · ·ψN ‖, (2)

where ψi designate the orthonormal molecular spin-orbitals (MSOs).
In general, the HF equations have the form of a pseudo-eigenvalue problem,

F({ψ j })ψi = εiψi , (3)

with F({ψ j }) representing an integro-differential operator, which replaces the two-
body interelectronic interactions in the Hamiltonian H by an average one-electron
potential due to the remaining electrons. Since these equations, in their full generality,
are difficult to solve (except, possibly, for highly symmetric systems, such as atoms [2]
or diatomics, when their dimensionality can be reduced to one or two spatial dimen-
sions enabling a numerical integration), one employs the LCAO (linear combination
of atomic orbitals) approximation to convert the integro-differential Eq. 3 into a finite-
dimensional algebraic problem by expanding the MSOs, or corresponding molecular
orbitals (MOs), in terms of a finite basis set of nonorthogonal atomic spin-orbitals
(ASOs), or AOs, that define a chosen ab initio model (see Sect. 2).

The mean energy hypersurface E(�), Eq. 1, defined on a manifold of admissible
IPM wave functions �, may possess, in general, a multitude of stationary points, in
which the first variation δ(1)E(�) vanishes, and which are associated with various
HF solutions. Clearly, the desired ground state solution should be associated with the
absolute minimum on this hypersurface. However, the vanishing of δ(1)E(�) only
guarantees that the solution corresponds to a stationary point, since HF Eq. 3 repre-
sent a necessary—but not a sufficient—condition for � to correspond to even a local
minimum, not to mention the global one. The self-consistent field (SCF) iterative pro-
cedure that is generally employed when solving HF Eq. 3 will likely lead to a minimum
or a saddle point that is associated with the catchment region in which lies the chosen
initial or starting wave function. In this way one can often find different HF solutions
in an ad hoc manner. A systematic procedure for finding all HF solutions was first
presented by Kowalski and Jankowski [3]. However, such an algorithm (even at the
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LCAO level) is not easy to carry out, except for simple model systems studied by these
authors.

We must also keep in mind that the number and character of HF solutions will
depend on the manifold of allowed IPM wave functions. When the Hamiltonian H ,
characterizing a given problem, possesses various symmetries that form a group G,
so that [H, g] = 0, ∀g ∈ G, one usually restricts the IPM manifold to those wave
functions that belong to the same symmetry as H [or, better, to those that transform
according to the irreducible representations (irreps) of G]. Such solutions are referred
to as restricted or RHF solutions. In general, G is given by a direct product of sub-
groups that are associated with various invariant properties of the system, such as the
total particle number, time reversal, spin, spatial, and other symmetries.

For molecular systems, typical symmetries of H arise from its spin independence
and from the spatial symmetry of the frozen nuclear framework that defines the elec-
tronic Hamiltonian in the Born–Oppenheimer approximation. Thus, for an N = 2n
electron closed-shell molecular system, the RHF wave function � has the form of a
pure-singlet Slater determinant with doubly occupied spatial MOs φi that transform
according to the irreps of a relevant point group, namely

� = (1/
√
(2n)!) det‖φ1α, φ1β, φ2α, φ2β, . . . , φnα, φnβ‖ . (4)

When we require that all degenerate MOs are either doubly occupied or unoccupied,
�will belong to the totally symmetric irrep of a given point group, and will be referred
to as a symmetry-adapted (SA) RHF solution. In an open-shell case, one employs a
restricted open-shell HF (ROHF) IPM wave function that is associated with a high-
spin component for a given spin-multiplet and is represented by a determinant with a
doubly occupied core and an open-shell part consisting of MOs having the same spin.

Now, if we restrict our variational manifold to SA wave functions that constitute
simultaneous eigenstates of H and all of g ∈ G, we are in fact imposing constraints
on the variational problem for E(�), Eq. 1. These constraints reduce the most gen-
eral IPM manifold to the corresponding SA submanifold, and thus can only raise the
variational energy. This fact is the essence of the so-called “symmetry dilemma” of
Löwdin [4], since by allowing broken symmetry (BS) solutions we can improve the
upper bound to the energy. Thus, loosely speaking, by allowing an a priori “lousy”
wave function, we can obtain, at least in principle, a better upper bound for the energy.

In actual applications it is usually the spin symmetry that is given up, since it proved
to be the most effective in the energy lowering of the SA solution, as long as a BS
solution with lower energy exists. This is usually the case for structures involving
highly stretched chemical bonds or for electron-rich systems. The simplest way to
break the spin symmetry is to employ different orbitals for different spins (DODS)
wave function, displaying a nonvanishing spin-density waves (SDWs). A more sophis-
ticated breaking of spin symmetry may involve torsional spin-waves, or we may even
break the Sz symmetry by considering general spin functions, as given by a general
linear combination of the α and β spins (for detailed classification of BS solutions,
see [5–7]). Such DODS BS solutions may often be found even for closed-shell mol-
ecules, and were first generated by Koutecký [8]. While in the closed-shell case such
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DODS solutions are found only in special circumstances, they are invariably present
for open-shell systems.

A methodical characterization of HF solutions in terms of their stability was ini-
tiated by Thouless [9], who considered the second variation δ(2)E(�) of the mean
energy functional 1 and formulated general stability conditions. Clearly, if a given HF
solution is to correspond to a (local or global) minimum on E(�), its second variation
must be positive definite, i.e., δ(2)E(�) > 0. Since δ(2)E(�) can be represented as
a quadratic form in terms of variational parameters, the stability conditions may be
characterized by the associated eigenvalue problem. Thus, for a solution to be stable,
all eigenvalues of the stability problem must be positive, while the presence of one or
more negative eigenvalues implies the instability, the corresponding stationary point
having the character of a saddle point. Moreover, the eigenvector associated with the
smallest negative eigenvalue gives the direction of the steepest descent on E(�) at
the stationary point [6,10,11].

For a spin-independent electronic Hamiltonian describing a closed-shell system
(cf. Eq. 4), the Thouless stability conditions may be factorized into the four subprob-
lems [10], three of which are identical and can be associated with the spin-symmetry
breaking, while the remaining one preserves the spin symmetry and leads to the break-
down of spatial (and/or some other, e.g., alternancy [12]) symmetry. The correspond-
ing instabilities were referred to by Čížek and Paldus [10,11] as the triplet (or non-
singlet) and singlet ones, respectively. The triplet instability leads to an unrestricted HF
(UHF) solution of the DODS type with a SDW, while the singlet instability implies the
existence of a pure-singlet, BS solution with doubly occupied MOs that is character-
ized by various types of charge-density waves (CDWs). The existence of such solutions
was amply demonstrated in several studies using semiempirical Hamiltonians [10,13–
15], and later on for the standard ab initio model Hamiltonians (see, e.g., [16–20]; for
an overview see [7] and Sects. 3.6–3.8 of [6]). A similar development was carried out
concerning the stability of the ROHF solutions for simple open-shell systems [21–25]
(see also [6,7]), as well as for Brueckner (or maximum overlap) IPM wave functions
[26].

The primary goal of this paper is to examine the singlet stability conditions, and
the nature of the resulting BS solutions, for a number of real, as well as hypothetical,
π-electron model systems, having different spatial symmetry and nuclear-framework
geometry, in order to better understand the appearence and properties of the result-
ing SA and BS solutions. We employ a semiempirical model Hamiltonian of the
Pariser-Parr-Pople (PPP) type [27], and our model systems represent various planar,
π-electron networks with conjugated double bonds, ranging from the most symmet-
ric cyclic polyenes CN HN with a nondegenerate ground state (N = 2n = 4ν + 2;
the so-called Hückel rule), to their various stereoisomers with lower symmetry, pri-
marily the “perimeter models” of corresponding polycyclic aromatic hydrocarbons.
Such monocyclic, completely conjugated hydrocarbons are generally referred to as
[N ]annulenes. Since, however, this term is normally associated with the most stable
conformer, invariably represented by a “perimeter model” or p-model of some poly-
cyclic aromatic hydrocarbon, we prefer the p-model terminology so that we can easily
distinguish different stereoisomers (see Sects. 5, 7, and 8 for more detail).
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In order to introduce the necessary notation, we first recall the matrix form of
HF equations and of the corresponding singlet and triplet stability conditions for the
closed-shell case. We then define the model Hamiltonian employed and present the
results and their discussion.

2 Hartree-Fock-Roothaan equations [28]

The algebraic form of HF Eq. 3 in their LCAO form is usually referred to as the Hartree-
Fock-Roothaan (HFR) equations. One thus approximates each orthonormal molecular
spin-orbital (MSO) ψi by a linear combination of a finite set of nonorthogonal (but
normalized) atomic spin-orbitals (ASOs) χµ, (µ = 1, . . . ,m)

ψi =
m∑

µ=1

Cµiχµ, 〈ψi |ψ j 〉 = δi j , 〈χµ|χν〉 = Sµν, Sµµ = 1. (5)

Introducing row matrices of ASOs and MSOs by

χ = ‖χ1 · · ·χm‖, ψ = ‖ψ1 · · ·ψN ‖, (6)

we can write the first Eq. 5 as

ψi = χci , cT
i = ‖C1i C2i · · · Cmi‖, (7)

where ci is a column vector and cT
i designates its transpose, or globally as

ψ = χC, C = ‖Cµi‖m×N = ‖c1c2 · · · cN ‖. (8)

In a closed-shell case, HF equations will generate m MOs, (m � N ), of which only
n = N/2 will be doubly occupied. Using a minimum AO basis set, we have in fact
m = N = 2n, so that only half of the MOs that are generated is doubly occupied,
the remaining ones forming the virtual MOs. The canonical version of HFR equations
then takes the form [28]

F({c j })ci = εi Sci or F({Cocc}) = SCε, (9)

where ε = ‖εiδi j‖ is a diagonal matrix of orbital energies.
The Fock operator F = ‖Fµν‖ has the general form

Fµν = hµν +
∑

j (occ)

〈µj |v|ν j〉A, (10)

with hµν designating the one-electron component of H , and 〈µj |v|ν j〉A the antisym-
metrized two-electron integral defined as

〈µj |v|ν j〉A = 〈µj |v|ν j〉 − 〈µj |v| jν〉, 〈µj |v|ν j〉 ≡ 〈χµψ j |v|χνψ j 〉. (11)
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In the closed-shell case, with � given by Eq. 4, we then have

Fµν = hµν + 1
2

∑

λκ

pλκ 〈µλ|v|νκ〉a, (12)

where now

〈µλ|v|νκ〉a = 2 〈µλ|v|νκ〉 − 〈µλ|v|κν〉, (13)

and pµν designates the element of the first order density matrix P,

P = ‖pµν‖, pµν = 2
n∑

i=1

C̄µi Cνi , (14)

where the sum extends over the occupied MOs.

3 Stability conditions

An arbitrary IPM wave function � that is not orthogonal to a HF or HFR wave func-
tion �0, and thus lies in the “neighborhood” of �0, may be expressed, according to
Thouless’ theorem [9], in the form

|�〉 = exp(D̂)|�0〉, (15)

where the operator D̂

D̂ =
∑

a,r

∑

σ,τ=α,β
drτ

aσ X̂†
rτ X̂aσ =

∑

A,R

d R
A X̂†

R X̂ A, (16)

represents all possible monoexcitations promoting an occupied spin-orbital aσ ≡
|a〉|σ 〉 ≡ |A〉 ≡ A to a virtual one rτ ≡ |r〉|τ 〉 ≡ |R〉 ≡ R. Here, and in the following
text, X̂†

I and X̂ I designate fermionic creation and annihilation operators associated
with the spin-orbital basis {|I 〉}. We will employ generic labels A, B, . . . for the
occupied spin-orbitals and R, S, . . . for the virtual ones, and arrange the variational
coefficients d R

A into a column matrix D in some a priori fixed order, e.g.,

DT = ‖d R
A d S

A · · · d R
B d S

B · · · ‖ . (17)

The second variation δ(2)E(�0) can then be expressed as a quadratic form [9,10]

δ(2)E(�0) = X†WX, X =
∥
∥
∥
∥

D
D̄

∥
∥
∥
∥ , W =

∥
∥
∥
∥

A B
B̄ Ā

∥
∥
∥
∥ , (18)
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where the square matrices A and B have the elements

(A)RS
AB = fRSδAB − f ABδRS + 〈RB|v|AS〉A,

(B)RS
AB = 〈AB|v|RS〉A, (19)

so that W is Hermitian since A† = A and B† = B̄, a bar designating complex conju-
gation.

Thus, for δ(2)E(�0) to be positive definite, it is necessary and sufficient that all the
eigenvalues λi of W,

WYi = λi Yi , Yi =
∥
∥
∥
∥

Zi

Z̄i

∥
∥
∥
∥ , (20)

be positive. In most actual applications A and B are real, in which case the eigenvalue
problem 20 can be factorized into the two subproblems [10]

(A ± B)Z(±)i = λ
(±)
i Z(±)i , (21)

where Z(±)i = Zi ± Z̄i . Thus, if at least one of the eigenvalues λi is negative, i.e.,
λ1 < 0, the HF solution �0 does not represent a local minimum within the varia-
tional space considered, and the corresponding eigenvector Z1 gives a direction of the
steepest descent on the hypersurface E(�), Eq. 1, at � = �0 (see [6] for details).

4 Singlet and triplet stability conditions

For a spin-independent Hamiltonian H that commutes with both Ŝz and Ŝ2, the HF
stability conditions in their general spin-orbital form can be further factorized into
the singlet and triplet (or, more correctly, nonsinglet) stability conditions [10]. The
closed-shell type IPM wave function 4 automatically preserves the Ŝz component of
total spin, as does the corresponding UHF wave function. Thus, in this case, only the
total spin symmetry can be violated. As shown in detail in references [10,22] or [6],
the general spin-orbital stability conditions 20 or 21 factorize in this case into what we
refer to as the singlet and triplet stability conditions, characterized by matrices As,t

and Bs,t with matrix elements

(As,t )rs
ab = 〈r | f |s〉δab − 〈b| f |a〉δrs + 2ξ 〈rb|v|as〉 − 〈rb|v|sa〉,

(Bs,t )rs
ab = 2ξ 〈ab|v|rs〉 − 〈ab|v|sr〉, (22)

where ξ = 1 in the singlet case and ξ = 0 in the triplet case, while the lower case
letters designate spin-independent MOs, i.e., a designates φa , (a = 1, 2, . . . , n) and
similarly for virtual orbitals.

The singlet and nonsinglet (triplet) instabilities, as implied by the sign of the lowest
root of the respective stability problem, represent the most surprising instabilities for
closed-shell systems. The occurrence of a triplet instability that implies the existence
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of an UHF solution of the DODS type with lower energy than the spin-symmetry
adapted RHF solution, is very common, and is invariably found when breaking true
chemical bonds, since the RHF potential energy curve, or surface, leads to wrong
dissociation products. However, the presence of a singlet instability is much more
intriguing, since it implies the existence of another pure-singlet RHF solution. Such
solutions generally break the spatial symmetry, as characterized by the point group of
the frozen nuclear framework of the electronic Hamiltonian.

The energy lowering associated with these singlet BS solutions is generally much
smaller than is the case for UHF solutions. Although an unambiguous interpretation
of the physical or chemical meaning of such BS solutions is not easy to establish
(cf., e.g., Refs. [6,29] and [30]), and their existence may be simply an expression of
the fact that the HF approximation is inadequate in a given case, there is nonetheless
a definite evidence that in some cases such an instability suggests a preferred distor-
tion of the nuclear framework. This is the case, for example, for polyenic chains, as
modeled by cyclic polyenes [31], or for other electron-rich systems (see [6]), where
the actual symmetry breaking of the nuclear framework persists even at the correlated
level (see, e.g., Refs. [31–40]).

In the case of atoms, the breaking of spherical symmetry indicates a tendency to
autoionization or, simply, a physical instability of a given system [18,41]. For molec-
ular systems, the existence of a BS RHF solution due to a singlet instability implies a
nuclear framework distorsion at the HF level of approximation, since it can be shown
[6] that lowering of the symmetry of the nuclear framework, as implied by the BS
solution and its CDW, leads to an energy lowering at the HF level (see Sect. 3.3 of
[6]). Of course, this distortion may or may not persist at the correlated level. For this
very reason we have decided to focus in this work on a study of the occurrence of
singlet instabilities and the character of implied BS solutions for various hypotheti-
cal structures that will enable us to pursue this phenomenon at various stages of the
nuclear framework distortion, as will be explained below.

5 Model description

5.1 Pariser-Parr-Pople (PPP) Hamiltonian [27]

We investigate various, mostly hypothetical, planar π-electron systems with conju-
gated double bonds as described by the Pariser-Parr-Pople Hamiltonian [27,42]

HPPP =
∑

µ

αµ +
∑′

µ,ν

βµνEµν +
∑

µ<ν

γµν(Eµµ − Zµ)(Eνν − Zν)

+ 1
2

∑

µ

γµµEµµ(Eµµ − 1), (23)

where the prime on the second summation symbol implies the tight-binding approx-
imation (sum extends only over nearest neighbors), αµ and βµν are the so-called
Coulomb and resonance (or hopping) one-electron integrals, γµν ≡ 〈µν|v|µν〉 is the
two-electron Coulomb integral, and Zµ is the number of π-electrons contributed by
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theµ-th atomic site (see, e.g., Sect. VI.C.2 of [42]). The unitary group generators [42]
Eµν ,

Eµν =
∑

σ=±1/2

X†
µσ Xνσ , (24)

are defined in a hypothetical basis of symmetrically orthogonalized 2pz carbon atomic
spin-orbitals |µσ 〉 = |µ〉|σ 〉, σ = ± 1

2 .
For neutral, unsaturated hydrocarbons with conjugated double bonds, in which

each atomic site contributes only one electron (Zµ = 1), we can assume that all one-
center integrals are identical, namely αµ ≡ α and γµµ ≡ γ11, and without any loss of
generality set α = 0, obtaining a simplified form of the PPP Hamiltonian 23,

H̃PPP =
∑′

µ,ν

βµνEµν + 1
2

∑

µ,ν

γµν(Eµµ − 1)(Eνν − 1). (25)

Moreover, when all the C–C bondlengths are assumed to be identical, we can also set
βµν = β. Thus, the only semiempirical parameters that specify this simplified PPP
Hamiltonian H̃PPP are the resonance integral β, whose spectroscopic value is usually
set equal to −2.4 eV, and the two-electron Coulomb integrals γµν that are evaluated
according to various approximations (see [27]). Here we employ a simple Mataga-
Nishimoto [43] approximation, which approximates the two-electron integrals γµν
via a simple Coulomb interaction between the two point charges located at sites µ
and ν, which is modified in such a way so as to obtain the on-site self-interaction
integral γ11, given by the difference of the valence state ionization potential I and the
electron affinity A for the 2pz carbon atomic orbital (the so-called I –A approximation
of Goeppert-Mayer and Sklar [44]). Taking the γ11 value to be equal to 10.84 eV, we
thus have

γµν = e2/(Rµν + a), γ11 = e2/a = 10.84 eV. (26)

We note that the PPP Hamiltonian represents a generalization of the Hubbard Hamil-
tonian that is often used in solid-state physics and in which only the on-site Coulomb
interactions are taken into account, i.e., γµν = γ11δµν . The advantage of the Hubbard
Hamiltonian is the fact that it involves only two parameters characterizing, respec-
tively, the one- and two-electron interactions, namely the hopping integral β ≡ −t
and the on-site interelectronic repulsion γ11 ≡ U . This makes it possible to derive
exact results for highly symmetric systems, such as cyclic polyenes CN HN , even when
N → ∞, by solving the so-called Lieb-Wu equations [45], as well as to examine the
studied systems in the whole range of the correlation regime [46,47] as a function of
the coupling constant (U/t). Although the PPP Hamiltonian treats the interelectronic
interaction in a more realistic way, we can still explore the behavior of the studied sys-
tems in the whole range of the coupling constant by keeping the γµν integrals at their
standard values, while changing β. Then the coupling constant is proportional to 1/β,
with β = 0 characterizing the fully correlated limit and |β| → ∞ the uncorrelated
limit (in practice achieved at |β| ∼ 5 eV). Clearly, the latter limit is equivalent to the
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Hückel approximation, while in the fully correlated limit (β = 0), each VB structure
provides the exact HF solution (see below).

5.2 Model systems

We employ planar, π-electron networks with conjugated double bonds to explore the
singlet stability of SA RHF solutions and, in the presence of an instability, we inves-
tigate the implied closed-shell, pure-singlet BS RHF solutions. The objective of this
exercise is to explore the occurrence and character of BS solutions, of their energies
relative to the SA ones, as well as the role of the point group symmetry of the under-
lying nuclear framework, on the propagation of these solutions and of the associated
CDWs to systems with a lower symmetry, or no spatial symmetry at all, namely the
phenomenon that could be referred to as a breaking of an “approximate symmetry” or
an“induced” symmetry breaking.

For this reason, we examine these solutions in the whole range of the coupling
constant or, equivalently, of its inverse given by the value of the resonance integral
β. We start with the most symmetric structures having N = 2n = 4ν + 2 sites and
a nondegenerate ground state, as represented by the cyclic polyenes CN HN , which
possess the DNh symmetry of a regular N -gon. In this case, the RHF solution is in
fact completely determined by the symmetry of the system in any minimum basis set,
whether semiempirical or ab initio, and the RHF MOs are identical with either the
Hückel or Brueckner (maximum overlap) MOs for any value of the coupling constant.
The singlet stability of these solutions was explored in detail in our earlier studies
[10,15,14,31], as well as the implied BS solutions, which display either the diagonal
or the off-diagonal CDWs (see also [48]). The former ones break both the spatial and
the alternancy symmetries (their CDWs are formed by the alternating atomic charges
pµµ), and are again singlet unstable, while those that are associated with the off-
diagonal CDWs (represented by the alternating bond-orders pµν) are singlet stable.
For N → ∞ these systems model linear polyenic chains with Born–von Kármán
boundary conditions and imply the existence of the bond-length alternation that per-
sists even when higher-order correlated methods are employed [31–36,49,50].

Starting with these highly symmetric structures, we then gradually lower the DNh

symmetry by distorting the nuclear framework so that it fits with the perimeter of some
polycyclic aromatic hydrocarbon, unless otherwise stated (in which case we explicitly
specify the geometry of the nuclear framework employed). We then refer to these dis-
torted systems as “perimeter models” or p-models of a given polycyclic hydrocarbon.
In forming the p-models, we keep all the C–C bond lengths constant and equal to
1.4 Å and the C–C–C angles equal to 2π/3. For example, the N = 10 cyclic polyene
eventually becomes the p-naphthalene, N = 14 cyclic polyene the p-anthracene or
p-phenanthren, etc. (see Fig. 1), i.e., systems with the D2h or C2v symmetry. For larger
cycles, we can also arrive to p-models of other polycyclic hydrocarbons, including
those having the hexagonal or trigonal symmetry, or even to completely asymmetric
structures, such as p-benzanthracene.

Wherever our p-models describe actually existing systems that were synthetized and
studied experimentally (for reviews see references [51–53] and monographs [54,55]),
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Fig. 1 The linear polyacenes naphtalene (a) and anthracene (b), and their cyclic polyene “perimeter”
versions p-naphtalene (c) and p-anthracene (d). The structures (e) and (f) describe corresponding symme-
try-adapted RHF solutions in the fully correlated limit (β = 0). For structures (a) and (b) we also indicate
the site-numbering used for all these systems. See the text for details

we also provide the approprite terminology that is used by organic chemists. These
completely conjugated, monocyclic polyenes are generally referred to as [N ]annu-
lenes. They indeed have a more or less developed aromatic character when N satisfies
the Hückel (4ν + 2) rule, while those with 4ν carbon sites are non- or even anti-
aromatic. They generally possess the structure that avoids as much as possible the
steric effects or their planarity is stabilized with transannular bridges (see Sect. 7).

When interpreting our results, we will also find useful some basic theorems con-
cerning the existence of BS solutions for hydrocarbons with conjugated double bonds.
We recall them in the next section.

6 Some basic theorems

We next recall the basic theorem concerning the singlet stability of the RHF solutions
for planar conjugated systems in the fully correlated limit, as well as its important cor-
ollary. These theorems were formulated in our earlier study [13] of the singlet stability
and of the corresponding BS RHF solutions for polycyclic, alternant hydrocarbons,
and are based on the properties of RHF solutions in the fully correlated limit (β = 0).
They will help us to understand some of our results and we thus recall their essence
below.
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Theorem 6.1 [13] For β = 0, any Kekulé or Dewar structure represents the exact
RHF solution �0, Eq. 4, with ethylene-like MOs φi of the general form

φi = (χµ + χν)/
√

2, (27)

where µ and ν designate the sites forming a bond (for Kekulé structures, µ and ν
represent nearest neighbors). The total π-electron energy of such a solution is given
by the sum of ethylene-like orbital energies ε−i = 1

2 (γ11 − γµν). Thus, the Dewar-
type solutions have higher energy than the Kekulé ones, the latter having the same
total π-electron energy equal to E0(β = 0) = n(γ11 − γ12)/2. For alternant systems
this energy represents the absolute minimum on the mean energy hypersurface E(�),
Eq. 1, on the manifold of IPM wave functions 4.

From the fact that at β = 0, Kekulé solutions correspond to the absolute minimum
on the mean energy hypersurface E(�), Eq. 1, and the fact that the one-electron part
of the Hamiltonian can only further stabilize such solutions, we can conclude the
followings rule for the stability of HF solutions of the studied systems:

Corollary 6.2 [13] Let the invariance group of the Hamiltonian (i.e., of the nuclear
framework) of our system be the point group G. When there exists a Kekulé structure
having the same invariance group G, then the SA RHF solution is always singlet stable.
However, when all possible Kekulé structures possess the symmetry of some nontrivial
subgroup G′ of G, i.e., G′ � G, then the SA RHF solution may become singlet unstable
for some β in the interval 0 � β < βcrit, βcrit representing the critical β value for the
onset of instability.

7 Results and discussion

As is well known [10,31], the SA RHF solution for cyclic polyenes CN HN becomes
singlet unstable as we approach the fully correlated limit. The absolute value of the
critical resonance integral βcrit increases with increasing N (cf. Fig. 2 and [31]). Thus,
while for N = 6 (benzene) |βcrit| amounts to only ∼0.3 eV, it exceeds the spectro-
scopic value of |β| already for N = 26 (or ν = 6). We recall here that, in contrast,
there is only a slight dependence of |βcrit| on the size of linear polyacenes, as measured
by their number of sites N or the number of the benzene rings ν (cf. Fig. 2 and [13]).
Moreover, the SA RHF solutions for polyacenes with an even number of benzene rings
are always singlet stable, since they possess a fully symmetric D2h Kekulé structure
[13] (cf. Corollary 6.2). Considering the p-models of these polyacenes (Fig. 2), we find
again a significant dependence of |βcrit| on N , even though less pronounced than for
the DNh cyclic polyenes CN HN . Of course, all these three types of systems coincide
for N = 6 or ν = 1. It will thus be of interest to examine the behaviour of SA and,
whenever they exist, of BS solutions and their energies, in the whole range of the
coupling constant, proceeding from the DNh structures to various deformed D2h or
even completely asymmetric ones.

For |β| < |βcrit| we can thus generate BS RHF solutions with lower energy than that
of the SA RHF solution. This can be most easily done by choosing a suitable bond-order
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Fig. 2 The dependence of the criticalβ values,βcrit , (in eV) for linear polyacenes with ν benzene rings, their
“perimeter” D2h p-polyacene versions (see Fig. 1), and DNh cyclic polyenes CN HN , N = 2n = 4ν + 2
(rings), having a nondegenerate ground state, as a function of their size measured by the parameter ν

(BO) matrix as the initial approximation in the SCF iterative process, even though in
special cases more care is required (cf. [10]). As we have already noted, for sufficiently
large N (or for small enough |β| values when we fix N ), we find two negative roots
in the singlet stability problem for cyclic polyenes CN HN that lead, respectively, to
diagonal (atomic charge alternating) and off-diagonal (bond-order alternating) CDW
solutions. The diagonal CDW solutions are themselves singlet unstable, leading even-
tually to stable off-diagonal CDW solutions, representing the true RHF ground state,
contrary to some earlier claims (cf. [48] vs. [56–58]). Thus, by a BS solution we shall
always understand a stable BS solution.

7.1 C10H10 and C14H14 structures

Since for the smallest ring (N = 6) there is no difference between the cyclic polyene
itself (i.e., benzene) and its p-model, namely p-benzene, we first focus our attention
on the next two cases, namely on CN HN with N = 10 and 14, whose p-model ver-
sions correspond to the perimeter models of naphthalene and anthracene (Fig. 1).
Only in the fully correlated limit (β = 0) the p-models coincide with the correspond-
ing polyacenes. We recall a very different behaviour of linear polyacenes having an
even or an odd number of benzene rings [13], which is reflected in the behaviour of
the corresponding p-models, especially in the vicinity of the strongly correlated limit
(β = 0).

We first consider the energy difference �E between the SA and BS solutions,

�E = ESA
0 − EBS

0 , (28)
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which is defined and positive in the region of the instability of the SA solution, |β| <
|βcrit|. For the DNh cyclic polyenes,�E monotonically increases with decreasing |β|
value, reaching its maximum at β = 0, as may be seen in Figs. 3 and 4 for N = 10 and
14, respectively. However, this behaviour, which one would expect on the first sight,
does not occur in general for distorted cyclic polyenes. Indeed, when we lower the
DNh symmetry of cyclic polyenes CN HN by distorting their nuclear framework, as
indicated in Fig. 3 and 4, reaching, eventually, the p-models of linear polyacenes
(p-naphthalene and p-anthracene), having the point group symmetry D2h , we invari-
ably observe that once the deformation of the nuclear framework reaches certain stage,
the energy difference �E , Eq. 28, reaches its maximum at some nonvanishing value
of |β|, and then starts decreasing. In fact, for the p-naphthalene (Fig. 3), it vanishes at
β = 0, while for the p-anthracene (Fig. 4) it reaches a certain finite value in the fully
correlated limit.

A clue to this different behaviour may be understood when we consider the sta-
bility and BS solutions for the actual linear polyacenes, namely for naphthalene and
anthracene. We know that for naphthalene, the SA solution is always stable, since
there exists a Kekulé structure having the D2h symmetry, while this is not the case for
anthracene [13]. However, for β = 0, there is no difference between the Hamiltonians
describing the actual polyacene and its p-model. Thus, �E for p-naphthalene must
vanish at β = 0, while for p-anthracene it must coincide with that of anthracene
(cf. curves 4 and 5 in Fig. 4).

Yet, focussing solely on the energy characteristics of the SA and BS solutions does
not reveal the whole story. When we consider the roots of the singlet stability prob-
lem, shown in Figs. 5 and 6 for the p-naphthalene and p-anthracene, respectively,

Fig. 3 The energy difference�E (in eV) between the symmetry-adapted (SA) and broken-symmetry (BS)
RHF solutions for C10H10 cyclic polyenes, �E = ES A − EBS , as a function of the resonance integral
β (in eV). The individual structures range from the fully symmetric C10H10 ring with D10h point group
symmetry to the D2h p-naphthalene and similar intermediately distorted structures as indicated in the figure.
The critical β values are also listed in the figure for each case
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Fig. 4 The energy difference�E (in eV) between the symmetry-adapted (SA) and broken-symmetry (BS)
RHF solutions for C14H14 cyclic polyenes, �E = ES A − EBS , as a function of the resonance integral β
(in eV). See Fig. 3 and the text for details

Fig. 5 The dependence of the two lowest-lying roots λmin of the singlet stability problem for the SA
(curves B+

3g and B−
1g) and BS (curves A−

2 and B+
2 ) RHF solutions for p-naphthalene as a function of the

resonance integral β (in eV). The curves are labeled by the respective irreducible representations of the
D2h and C2v point groups, and the vertical dashed line at β = −0.637 eV indicates the critical resonance
integral value

we observe that in the former case there is a region of |β| values near β = 0, where no
singlet instability is present, while in the case of p-anthracene, the singlet instability
persists all the way to the fully correlated limit.

In order to understand this behaviour in the case of p-naphthalene, we examined the
character of the mean-energy hypersurface E(�) in the neighborhood of the relevant
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Fig. 6 Same as Fig. 5 for
p-anthracene, with
βcrit = −0.986 eV

SA and BS solutions. The nature of this surface is schematically represented in Fig. 7
as a one-dimensional energy plot along a hypothetical coordinate in the variational
manifold passing through the relevant SA and BS solutions. We know (Theorem 6.1)
that at β = 0 the RHF solutions are represented by Kekulé structures, all having
the same energy, and the corresponding minimum is of a higher than second order,
since the second variation δ(2)E(�) at these solutions vanishes. When we move away
from the fully correlated limit by slightly increasing the |β| value, the SA solution
remains to be stable, but its energy decreases with increasing |β| value at a slower rate
than does that of the BS solution, thus increasing the �E gap and, at the same time,
the curvature associated with the corresponding minimum also increases (cf. Figs.
5 and 7). Eventually, around |β| ∼ 0.2 eV this local minimum disappears, resulting
in an unstable SA solution associated with a local maximum on a schematic plot in
Fig. 7. With further increase of |β|, this maximum becomes less and less prominent
relative to the minimum characterizing the BS solution, untill it disappears altogether
at β = βcrit = −0.637 eV.

In Fig. 7 we also indicated the overlap between the SA and BS solutions, as well
as between the two degenerate BS solutions. We see that as we approach βcrit these
overlaps steadily increase towards their maximum possible value of one, and the BS
solutions merge with the now stable SA solution at β = βcrit . We should also mention
the switch of the lowest root of the stability problem from the B+

3g symmetry species

to B−
1g in the case of p-naphthalene, while no such switching occurs for p-anthracene

(cf. Figs. 5 and 6). This switch occurs due to the orbital energy crossing (at about
β ∼ −0.3 eV for the two highest occupied and the two lowest unoccupied MOs).
However, this has no effect on the smoothness of the total energy, since both cross-
ing orbitals remain either occupied or unoccupied in the whole range of the coupling
constant thanks to a large gap between the occupied and virtual orbitals for all β.

We thus see that the behaviour of the energy lowering �E due to the symmetry
breaking continuously changes with the deformation of the nuclear framework from
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Fig. 7 A schematic
representation of the cut of the
variational mean-energy
hypersurface E(�), Eq. 1,
passing through the two
degenerate BS solutions
(labelled as bs1 ≡ 1 and bs2 ≡
2) and the SA solution (sa ≡ 0)
for typical values of the
resonance integral β. On the
right-hand-side of the figure are
listed the values of the overlap
integral between the two BS
solutions S12 ≡ 〈1|2〉 and
between the BS and SA solution
S01 ≡ 〈1|0〉 = 〈2|0〉. See the
text for details

0 eV < < 0.2 eV 

 = 0 eV 

0.2 eV <  < crit

 > crit  = 0.64 eV 

= –0.001 eV 
S12 : 0 
S01 : 0.0632 

 bs1≡ 1 sa ≡ 0  bs2 ≡ 2 

↓ ↓ ↓

= –0.05 eV 
   S12 : 0.0095 
   S01 : 0.1057 

= –0.10 eV 
   S12 : 0.0185 
   S01 : 0.1711

= –0.15 eV 
   S12 : 0.0349 
   S01 : 0.2706

= –0.20 eV 
   S12 : 0.0602 
   S01 : 0.4110

= –0.25 eV 
   S12 : 0.0921 
   S01 : 0.5311

= –0.6 eV 
   S12 : 0.8399 
   S01 : 0.9576

the fully symmetric DNh to the D2h symmetry of the p-models. We see that even
the deformed structures very much “mimic” the fully symmetric cyclic polyene, the
maximal value of �E shifting towards β = 0 as we approach the fully symmetric
structure. Yet, at β = 0 we must reach the pertinent Kekulé structure. Nonetheless,
even for highly deformed structures, we see the tendency of the RHF solutions to
simulate that found for cyclic polyenes, a phenomenon we like to refer to as a break-
ing of an “approximate symmetry”. We also note that the critical |β| value steadily
decreases with the increasing deformation, yet in all cases is much larger than for the
actual polyacene: in the case of N = 14 structures, we have βcrit = −0.326 eV for
anthracene, −0.986 eV for p-anthracene, and −1.418 eV for C14H14 cyclic polyene
(labeled as “ring-C14H14” in Fig. 4).

Finally, in Figs. 8 and 9 we present a plot of the bond orders pµν (i.e., off-diag-
onal CDWs) for both SA and BS solutions of p-naphatalene and p-anthracene as a
function of β. We see that for N=10 in the fully correlated limit (β = 0), the SA solu-
tion converges towards the symmetric Kekulé structure, as in the case of naphthalene,
since in this limit there is no distinction between the naphthalene and p-naphthalene
Hamiltonians, while the BS solution tends toward the bond order alternating solution.
However, as we have seen already, in distinction to naphthalene, whose SA RHF solu-
tion is always stable (Corrolary 6.2 and Fig. 2), that of anthracene becomes unstable for
|β| < 0.326 eV. The asymmetric bond-order alternating BS solution thus persists even
in the highly correlated regime, as for the corresponding cyclic polyene, irrespective
of the nuclear framework distorsion. In contrast to the N=10 case, the structure of
the SA solution in the fully correlated limit for the anthracenic case may be described
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Fig. 8 The dependence of the off-diagonal bond-order matrix elements pi j between the sites i and j
for both SA (sa) and BS (bs) RHF solutions of p-naphthalene as a function of the resonance integrals β
(in eV). See Fig. 1 for the site-labeling convention employed. On the right hand side, the values of the
Hückel model bond-orders are indicated by dashed lines

Fig. 9 Same as Fig. 8 for
p-anthracene

as that of benzene surrounded by butadienic structures (see Fig. 1f), while the BS
solutions display the same bond-length alternating pattern as in the C14H14 ring.

Let us finally comment on the existing compounds that are relevant to our π-elec-
tron model systems. The fully symmetric C10H10 (cyclodecapentaene) forming a reg-
ular tengon (all-cis[10]annulene) have been actually synthetized in spite of its highly
distorted C–C–C angles (144◦ vs. 120◦) and of a serious overcrowding of the inner
protons. For these reasons its structure is not planar and seems to involve different
cis–trans conformers. Yet the barrier between these conformers is low so that the NMR
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spectrum implies the equivalence of all CH groups [55], but shows no ring-current
effects, presumably due to its nonplanarity [53].

The existence of the di-trans-isomer, i.e., our p-naphthalene, seems to be a priory
ruled out due to the transannular hydrogen crowding, unless the ring were severely
twisted out of plane. However, when the interior hydrogens are replaced with an atom
that is linked to the 1,6 positions of the ring (in the numbering of Fig. 1 atoms 5 and
10), crowding can be eliminated. Several such structures involving either methylen-
ic (1,6-methano[10]annulene) or oxygen and nitrogen atoms (1,6-oxido[10]annulene
and 1,6-amido[10]annulene, respectively) bridges were synthetized and studied [59]
(see also reviews [53–55]). These compounds are not entirely planar, the bridging
carbons lying out of plane, but despite the lack of strict planarity there is a significant
delocalization of π-electrons. They are characterized by nonalternating “benzenoid”
bonds (1.38–1.42 Å), and the distance between the bridging C1 and C6 atoms has been
estimated to amount to 1.6–2.2 Å, thus excluding the bond across the ring (i.e., the
caradiene form), even though the barrier seems to be small. The absence of alternating
bond lengths is not surprising, since our models indicate that such an alternation will
first occur for much larger cycles.

The structure of the existing [14] annulene corresponds to our p-pyrene. It still
involves a serious overcrowding of the inner hydrogens and is likely not entirely pla-
nar, yet provides a striking confirmation of the Hückel (4ν + 2) rule. It is diatropic
and exists in two conformations (labelled as A and B) that differ in the spatial position
of inner hydrogens [51]. Conformer A forms a crystaline substance and possesses a
center of symmetry, which rules out the bond-length alternation.

Similarly as for the 10-membered ring, there has also been synthetized an analogue
of our p-anthracene model, namely syn- and anti-1,6:8,13-bismethano[14]annulene
and similar bisoxido compounds [54]. Thus, one requires two out-of-plane bridges
across the ring, either on one side (syn) or on the opposite sides (anti) of the annulene
plane, in order to stabilize the p-anthracenic structure. Again, all bonds in this systems
were found to be of a similar length (∼1.39 Å) and the perimeter reasonably planar.

7.2 C18H18 and C22H22 structures

We next briefly present the results for polyenes with 18 and 22 sites that are related
to tetracene and pentacene. The energy differences�E between the BS and SA RHF
solutions, shown in Figs. 10 and 11, respectively, demonstrate that the pattern described
in the preceding Sect. 7.1 will repeat itself for larger and larger polyenes, while the
critical |β| value will steadily increase, reaching and eventually exceeding the spec-
troscopic value of −2.4 eV. Indeed, for C18H18 we observe the same pattern as for the
C10H10 structures, the RHF solution for tetracene being always singlet stable. Conse-
quently, the �E for p-tetracene vanishes at β = 0, and the two p-benzphenanthrene
structures (structures 4 and 5 in Fig. 10), representing “bent” p-tetracene-like struc-
tures, behave in a similar way. In contrast, p-coronene and p-perylene, which are more
spatially extended and thus closer in their character to the D18h cyclic polyene, behave
correspondingly as β → 0.
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Fig. 10 Same as Fig. 3 for C18H18 polyenes

Fig. 11 Same as Fig. 4 for C22H22 polyenes

For 22-site polyenes, we again find an analogous situation as for the 14-site anth-
racenic-type structures. Here, the difference between the critical β values for the D22h

cycle and pentacene amounts to almost 2 eV, with βcrit for the cycle having an almost
spectroscopic value. Again, for β = 0, the energy difference �E for p-pentacene, as
well as for other “linear-like” p-pentacene structures (structures 3 and 4 in Fig. 11) is
identical with that for pentacene itself. The corresponding SA solution consists of a
central benzene surrounded by two butadiene-like structures on each side, while the
BS solutions are represented by either of the six Kekulé structures.

An interesting situation arises for the first time for the 18-site polyenes, in which
case we can deform the ring structure to an asymmetric p-benzanthracene, having no
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(or, rather, C1h) spatial symmetry. Not surprisingly, its RHF solutions are singlet stable
in the entire range of the coupling constant, since there is no symmetry to be broken.
Yet, as in other cases, the solutions display a CDW along the chain. It is worthwhile to
recall, however, that the Hückel solution gives the same bond-order matrix for any of
these structures, thus displaying no CDW, all nearest-neighbor bond orders being iden-
tical. In other words, at the tight-binding one-electron level of approximation, there
is no distinction between various deformed species and the fully symmetric cyclic
polyene. This is not the case for the PPP model, which accounts for the two-electron
Coulomb interactions, and which leads to BS bond-order alternating solutions for the
18-site ring and its distorted analogues.

We thus consider in greater detail p-benzanthracene, which does not possess any
spatial symmetry. This species possesses seven Kekulé structures, three of which have
one “cross-bond” (5–18, or 7–16, or 10–15; see Fig. 12), and two having two “cross-
bonds” (5–18, 10–15 and 7–16, 10–15). All these structures represent an exact RHF
solution for β = 0, and have the same energy. When we search for the corresponding
RHF solutions for β = 0, using the bond-order matrix associated with these Kekulé
structures as a starting approximation, we can follow different RHF solutions that cor-
respond to these structures for small enough |β| values. The energy of these solutions,
obtained by a careful “analytic continuation” with small steps �β, plotted relative to
that having the lowest energy and corresponding to the Kekulé structure 1, are shown
in Fig. 12. All these higher energy solutions eventually collapse into the one associated
with the first Kekulé structure (structure 1 in Fig. 12). The reason for this behaviour
is shown schematically in Fig. 13.

It is instructive to examine the bond-order matrix for the two lowest-energy solu-
tions that are associated with structures 1 and 2 of Fig. 12. These solutions correspond

Fig. 12 The energy difference �E (in eV) between the energy Ei of the RHF solution that is associated
with the Kekulé structure (i) and the energy E1 of the most stable RHF solution associated with the Kekulé
structure 1,�E = Ei − E1, (i = 1, 2, . . . , 7), of p-benzanthracene, as a function of the resonance integral
β (in eV)
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Fig. 13 A schematic
representation of the cut of the
variational mean-energy
hypersurface E(�), Eq. 1, for
p-benzanthracene, passing
through the RHF solutions
associated with the two Kekulé
structures 1 and 2 of Fig. 12, for
various values of the resonance
integral β

β =  –1.03 eV 

β= –0.001 eV 

            2 1

↓ ↓

β= –0.200 eV 

β= –0.600 eV 

β= –0.800 eV 

β= –1.000 eV 

to the two degenerate BS solutions for the D18h cyclic polyene that are characterized
by alternating bond orders along the chain or, equivalently, by the off-diagonal CDW.
Although these solutions are no longer degenerate in the case of p-benzanthracene,
they are close in energy when compared with those associated with other Kekulé struc-
tures having one or two “cross-bonds” (structures 3–7), respectively). Solutions 1 and
2 also coexist in the largest range of the coupling constant when compared with other
solutions, roughly for 0 < |β| < 1 eV, and differ by at most ∼0.1 eV in the energy.

The values of a few typical bond orders as a function of |β| for solutions (1) and
(2) are given in Table 1. We can measure the strength or amplitude of the associated
CDW by comparing the magnitude of neighboring bond orders, i.e., by �p, where
�p ≈ |p12 − p23| ≈ |p23 − p34| ≈ · · · ≈ |p12,13 − p13,14|, etc. We see that starting
with the maximal bond-order alternation at β = 0 when�p = 1, its intensity weakens
as |β| increases, �p becoming ∼0.3 at β = −1 eV for either solution. The second
solution disappears at β ∼ −1.029 eV, and �p that is associated with the most stable
solution then further decreases to ∼0.1 at β = −1.5 eV, and ∼0.03 at β = −2 eV.
The CDW then practically disappears for |β| > 3 eV, the bond orders approaching
those characterizing the Hückel solution with �p = 0 for any C18H18 structure
(cf. Table 1). This again should be seen from the viewpoint of the D18h cycle, in which
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case the BS solution exists only for |β| < |βcrit| ≈ 2 eV, while for D2h p-tetracene,
|βcrit| ≈ 1.25 eV. Thus, we see a very similar behaviour for p-benzanthracene, in which
case no spatial symmetry is present (except, of course, the planarity characterizing all
π-electron systems with conjugated double bonds). We like to regard this behaviour
as an approximate or induced symmetry breaking.

The cyclooctanonaene ring C18H18, referred to as [18]annulene, has the D6h sym-
metry of our p-coronene, and is perhaps the best studied of all annulenes [51–53].
The overcrowding of the inner hydrogens is not so extreme as to prevent a planar
configuration. The X-ray structure suggests that the deviation from the planarity is
less than 0.1 Å and seems to exclude the bond-length alternation. There are only slight
differences in the peripheral “cisoid” and “transoid” bonds (1.419 vs. 1.382 Å). The
molecule is definitely diatropic, and perhaps the most stable of all known annulenes
(its decomposition is accelerated by light).

As in previous cases, the p-tetracenic-like structure, namely that of syn–syn–syn-
1,6:8,17:10:15-trismethano[18]annulene, is also known, as well as other similar bridged
structures with various shapes of peripheral π systems [54].

The [22] annulene [53,60] has the structure of our p-ovalene and is again diatropic,
the inner protons clearly demonstrating the existence of a magnetically induced dia-
magnetic ring current, implying aromaticity. Surprisingly, the energy difference �E
between the BS and SA RHF solutions does not behave as for the ring-C22H22, as
might be expected, but has a rather small value in the whole range of the existence
of the BS solution (Fig. 11, curve 6), even though |βcrit| is rather large and close to
that of the ring system. Nonetheless, the result is consistent with the fact that no sig-
nificant bond-length alternation can be expected for realistic β values. We must also
note that this system shows a strange behaviour as we approach the fully correlated
limit. At |β| ∼ 0.5 eV, the SA solution becomes stable again, not unlike in the case of
p-naphthalene (Figure 5), and for very small |β| values its energy becomes slightly
lower than that of the BS solution. The latter is of course characterized by a nearly per-
fect bond-order alternation, corresponding to one of the Kekulé structures, while the
SA one has only 10 ethylenic fragments, trying again for a “benzenoid-like” structure
in the center. We must add, however, that both solutions in this limit are associated
with very shallow minima and it is very difficult to obtain a proper convergence with
a high accuracy.

7.3 Structures with N > 24

As the preceding examples of cyclic polyenes CN HN with N = 10, 14, 18, and 22
indicate, the same pattern will persist for larger and larger cycles and its deformed
analogues. As an example, we illustrate this in Figs. 14–16 for N = 30, 38, and 42,
respectively, for a few typical structures. In Tables 2–5 we present the bond-order
matrices for both the SA and BS solutions for the corresponding p-models of C38H38
and C42H42, respectively. We see again that in the fully correlated β = 0 limit the SA
solution converges to that typical for p-naphthalenic and p-anthracenic structures, rep-
resenting p-polyacenes with an even and odd number of benzene rings. The bond-order
alternation in SA solutions becomes weaker and weaker as we increase the resonance
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Fig. 14 Same as Fig. 4 for
C30H30 polyenes

Fig. 15 Same as Fig. 4 for C38H38 polyenes

integral |β| and, for |β| > |βcrit| quickly approaches that of the Hückel solution, as
may be expected. Yet, for |β| < |βcrit|, where the BS solutions with lower energy
exist, the bond-order alternation is significant even for the spectroscopic value of β,
implying bond-length alternating structures as in the fully symmetric cyclic polyenes
(cf. [31–36]).

The largest known annulene, which is also the least stable of the whole annu-
lenic series, seems to be the [30]annulene [61,62], probably having the structure of
p-kekuléne (or p-circumcoronene). Its instability (it almost completely decomposes
in 4 hours without protection from daylight) prevented more detailed study or X-ray
analysis, as far as we know, but its ultraviolet spectrum has been determined.
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Fig. 16 Same as Fig. 3 for
C42H42 polyenes

Table 2 Bond orders for the symmetry-adapted (SA) solutions of p-nonacene (p-C38H38) for several
values of the resonance integral β (in eV) The labeling of bonds is shown in Fig. 17(a)

Bond β (eV)

−3.5 −2.4 −1.5 −1.0 −0.5 −0.001

a 0.636 0.635 0.635 0.653 0.674 0.6667

b 0.636 0.634 0.625 0.526 0.340 0.0014

c 0.636 0.636 0.645 0.763 0.905 1.0000

d 0.635 0.633 0.615 0.446 0.255 0.0008

e 0.636 0.637 0.654 0.815 0.938 1.0000

f 0.634 0.630 0.607 0.419 0.246 0.0008

g 0.638 0.640 0.662 0.825 0.938 1.0000

h 0.632 0.626 0.598 0.425 0.254 0.0008

i 0.650 0.657 0.685 0.821 0.926 1.0000

j 0.637 0.634 0.611 0.457 0.294 0.0012

k 0.172 0.188 0.208 0.125 0.031 0.0001

l 0.123 0.141 0.173 0.144 0.038 0.0003

m 0.106 0.126 0.164 0.223 0.150 0.0008

n 0.100 0.120 0.162 0.311 0.488 0.6667

8 Conclusions

In this work we explored the propagation of the space-symmetry breaking effects at the
RHF level of approximation when proceeding from the highly symmetric structures to
those of lower symmetry, or no symmetry at all, using the PPP model of cyclic poly-
enes CN HN with a nondegenerate ground state (N = 2n = 4ν + 2, ν = 1, 2, 3, . . .).
Thus, we start with the most symmetric cyclic polyene CN HN , whose sites are located
at the vertices of a regular N -gon (which we refer to as “ring-polyenes” or rings), and
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Table 3 Bond orders for the broken-symmetry (BS) solutions of p-nonacene (p-C38H38) for several values
of the resonance integral β (in eV) in the range of singlet instability (βcrit = −2.556 eV)

Bond β (eV)

−2.4 −1.5 −1.0 −0.5 −.001

a A 0.709 0.558 0.828 0.423 0.880 0.351 0.942 0.241 1.0000 0.0008

b B 0.559 0.708 0.423 0.827 0.352 0.880 0.241 0.942 0.0008 1.0000

c C 0.707 0.562 0.826 0.426 0.879 0.352 0.942 0.242 1.0000 0.0008

d D 0.562 0.702 0.427 0.821 0.353 0.877 0.242 0.942 0.0008 1.0000

e E 0.702 0.569 0.819 0.435 0.876 0.358 0.942 0.242 1.0000 0.0008

f F 0.569 0.692 0.438 0.804 0.359 0.865 0.243 0.940 0.0008 1.0000

g G 0.695 0.582 0.805 0.461 0.866 0.380 0.939 0.250 1.0000 0.0008

h H 0.576 0.675 0.458 0.762 0.378 0.817 0.252 0.907 0.0008 1.0000

i I 0.700 0.613 0.794 0.529 0.851 0.470 0.927 0.341 1.0000 0.0010

j J 0.589 0.677 0.468 0.755 0.415 0.806 0.293 0.895 0.0010 1.0000

k K 0.151 0.216 0.088 0.257 0.058 0.257 0.024 0.190 0.0000 0.0000

l L 0.110 0.155 0.047 0.144 0.022 0.108 0.005 0.040 0.0000 0.0000

m M 0.099 0.127 0.035 0.083 0.011 0.045 0.001 0.008 0.0000 0.0000

n N 0.101 0.110 0.036 0.051 0.011 0.020 0.0005 0.002 0.0000 0.0000

The labeling of bonds is shown in Fig. 17(a)

whose RHF (or, in fact, a general minimum basis set IPM) solution is fully determined
by the DNh symmetry of the model. We then systematically deform this highly sym-
metric framework while preserving the constant C–C internuclear separations and, in
most cases, consider the systems with the standard C–C–C angles of 2π/3. In this
way we reach various “perimeter” models of standard aromatic hydrocarbons. All
these systems may be regarded as models of linear polyenes with Born–von Kármán
boundary conditions. The properties of the ring polyenes were studied in detail ear-
lier, both at the RHF and post-HF correlated levels [10,11,13,15,31–36,49,50]. Their
SA RHF solutions become singlet unstable for sufficiently large coupling constants
(or small enough resonance integrals |β|), implying the existence of BS RHF solutions
of different types. Those having the lowest energy and corresponding to the absolute
minimum on the mean-energy, variational hypersurface are those BS solutions that
possess the Dnh symmetry and are characterized by the CDW represented by alter-
nating bond orders along the chain. An analogous phenomenon is found at the ab
initio level, in particular when considering chains of hydrogen atoms [17], but for
long polyenic chains as well.

The BS solutions just mentioned imply the tendency towards the actual distortion
of the nuclear framework, namely a distortion that no longer preserves the identical
C–C bond lengths, thus leading to structures with alternating bond-lengths along the
chain (cf. Ref. [31]). Indeed, it can be shown (cf., e.g., [6]) that such a distortion
of the nuclear framework that is “in-phase” with the CDW of one of the degenerate
BS solutions invariably lowers its energy, while the distortion that is “out-of-phase”
with the CDW increases the energy (in each case with a nonzero first derivative of
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Table 4 Bond orders for the symmetry-adapted (SA) solutions of p-decacene (p-C42H42) for several values
of the resonance integral β (in eV)

Bond β (eV)

−3.5 −2.4 −1.5 −1.0 −0.5 −0.001

a 0.6356 0.6345 0.6288 0.5798 0.4637 0.0011

b 0.6354 0.6350 0.6430 0.7245 0.8415 1.0000

c 0.6356 0.6338 0.6149 0.4596 0.2744 0.0008

d 0.6353 0.6357 0.6557 0.8130 0.9315 1.0000

e 0.6354 0.6326 0.6035 0.4048 0.2460 0.0008

f 0.6356 0.6369 0.6652 0.8438 0.9410 1.0000

g 0.6345 0.6305 0.5952 0.3919 0.2440 0.0008

h 0.6373 0.6401 0.6723 0.8435 0.9385 1.0000

i 0.6316 0.6255 0.5883 0.4043 0.2527 0.0008

j 0.6493 0.6572 0.6931 0.8348 0.9270 1.0000

k 0.6373 0.6335 0.6028 0.4382 0.2934 0.0011

l 0.1721 0.1876 0.2022 0.0985 0.0268 0.0000

m 0.1222 0.1407 0.1698 0.1015 0.0190 0.0000

n 0.1044 0.1241 0.1638 0.1676 0.0686 0.0000

o 0.0968 0.1172 0.1637 0.2783 0.2820 0.0000

p 0.0947 0.1152 0.1642 0.3443 0.6053 1.0000

The labeling of bonds is shown in Fig. 17(b)

Fig. 17 The labelling of bonds in C38H38 and C42H42 polyenes used in Tables 2, 3–5, respectively

the corresponding potential, so that both potential energy curves cross with a finite
angle among them). However, the latter solution exists only in the limited region of
distortions, while the in-phase distorted one reaches eventually its minimum at some
finite distortion (as measured, e.g., by the difference between the longer and shorter
bond lengths), implying the most stable structure at the RHF or IPM level. In the
case of cyclic polyenes, the preference for a bond-length alternating structure persists
even at the post-HF correlated level (see above given references). Needless to say that
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when N → ∞, the critical value |βcrit| of the resonance or hopping integral increases
correspondingly, reaching its physical (or spectroscopic) value already at N ∼ 26 or
30.

It should be noted that this phenomenon is in fact analogous to the formation of the
Wigner lattice in the case of a low-density electron gas. Qualitatively, this tendency
is easy to understand when we consider a chain of hydrogen atoms in a DNh arrange-
ment and instead of the resonance integral β we vary the H–H internuclear separation
RH−H. Clearly, when RH−H exceeds the H2 equilibrium bond length, the system will
have a tendency to break the DNh symmetry to that of Dnh , since in the RH−H → ∞
limit, the energy difference between the DNh and Dnh solutions will amount to nDe,
where De designates the dissociation energy of H2 [17].

As already stated, the main objective of our study was to explore the symmetry
breaking phenomenon for real and hypothetical systems possessing different spatial
symmetry, yet identical in their composition. For this purpose we gradually distorted
the DNh cyclic polyenes, reaching eventually the “perimeter models” (or p-models)
of various aromatic hydrocarbons having the same number of carbon atomic sites.
In this way we lowered the DNh structures to those with the D6h , D2h or, if possi-
ble, C1h symmetry. A comparison was also made with the corresponding aromatic
hydrocarbons studied earlier [13].

Although, generally, the lowering of the symmetry of the nuclear framework brings
about the lowering of the critical value |βcrit| of the resonance integral, and thus restricts
the interval of β values in which the RHF solution is singlet unstable, the symmetry
breaking phenomenon persists as long as some symmetry remains to be broken. This
lowering of |βcrit| is particularly severe for the corresponding linear polyacenes (see
Fig. 2), in which case the SA RHF solution is singlet unstable only for those polyacenes
having an odd number of benzene rings [13]. Since at the PPP level of approximation
the p-models of polyacenes (i.e., p-polyacenes) in the fully correlated limit represent
identical systems as polyacenes themselves, we can draw on the earlier formulated
theorems [13] concerning the structure and degeneracy of RHF solutions in this limit,
as given by the VB structures. We also note here that at the Hückel level of approxi-
mation there is no distinction between various cyclic-polyene species as long as they
involve the same number of sites.

We thus find that for the structures having an even number of benzene rings in the
corresponding polyacene, namely those with even ν, the energy difference between
the BS and SA solutions tends toward zero in view of the inherent stability of polyac-
enes with an even number of benzene rings. In view of this fact, the p-model solutions
become again stable in the vicinity of the fully correlated limit (see Fig. 5). This is not
the case for less-distorted structures, which are closer in their geometry to the N -gon-
ic structures, and thus do not have Kekulé-type VB structures with bonds across the
“cycle” (see Figs. 3, 10, and 16). In contrast, for the structures with odd ν, in which case
the polyacene solutions are singlet unstable (although their |βcrit| is much smaller),
the energy difference �E between the SA and BS solutions tends towards the same
finite value as β → 0, given by the difference between the energies of benzene and
three ethylenic fragments, since in view of the nonexistence of a symmetric Kekulé
structure the SA solution in this limit consists of a central benzenic ring surrounded
by ethylenic fragments [as illustrated for the ν = 3 case in Fig. 1f; cf. also Figs. 8 and
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9, and Tables 2 and 4]. Note that in all cases, the �E value for β = 0 is the same,
regardless of the value of N [�E(β = 0) ≈ 0.3 eV].

Needless to say that in all cases when the distorted system possesses some nontrivial
symmetry (e.g., D2h or D6h), the BS solutions are again degenerate and belong to an
appropriately lower symmetry (C1h or D3h , respectively; clearly symmetry implied
by the planarity of these systems cannot be broken for the semiempirical models
employed). In this regard an interesting case arises once the distortion eliminates all
the spatial symmetry, as in the case of p-benzanthracene (N = 18, Fig. 12). Although
all the RHF solutions remain stable in the whole range of the coupling constant, as
may have been expected, we nonetheless observe—at least in the vicinity of the fully
correlated limit—the existence of quasidegenerate solutions associated with the stan-
dard (i.e., without any “cross-links”) Kekulé structures with alternating bond orders
along the chain. This is the most frapant case of the phenomenon that we refer to as
the breaking of an approximate symmetry or an implied symmetry breaking.

As outlined in the preceding section, a number of seemingly hypothetical structures
does actually exist and has been studied experimentally. The most surprising are the
p-models of linear polyacenes, which are made almost planar thanks to the stabiliz-
ing out-of-plane bridges. Even these systems nicely conform to the Hückel (4ν + 2)
rule and show a definite “aromatic” character (cf. [53]). This also conforms with our
results, since for these systems |βcrit| is still much smaller than its spectroscopic value,
so that no bond-length alternation can be expected. In any case, the energy lowering
due to the symmetry breaking bond-length alternation (as implied by the CDW of the
respective RHF solutions) is much smaller than for more “circular” structures that are
closer to the standard annulenes.

Of course, for sufficiently large polyenes, the bond-length alternation will arise, the
extreme case being represented by polyacetylene. In fact, we can expect that for rings
with more than 30 carbon sites the bond-length alternation will set in. However, such
rings are very difficult to study experimentally due to their inherent instability (cf. ref.
[61,62]). Once, however, N → ∞, our models describe polyacetylene (with Born–
von Kármán boundary conditions) irrespective of which stereoisomer is considered,
and computed bond-length alternation (∼0.05 Å) is born out by experiment (cf. [6]
and references therein).

Finally, let us also emphasize the commonality of the behavior shown by various
stereoisomers of cyclic polyenes, implying the usefulness of a highly symmetrical
DNh model, which enables a huge simplification of quantum-mechanical calculations
at any level of approximation. In fact, at the Hubbard Hamiltonian level one can easily
generate the exact results by solving Lieb-Wu equations, not to mention of course
that for the Hückel Hamiltonian there is no difference between various stereoisomers.
In any case, many of the properties of these systems found for the most symmetric
structures propagate to isomers that possess much lower or no symmetry.

In summary, our study of cyclic polyenes in their various geometric arrangements
clearly indicates not only the potential richness of various BS RHF solutions, but also
their connection with those arising from highly-symmetrical structures, as well as with
those encountered in the highly correlated limit. These relationships remind us the role
played by Welsh diagrams in molecular spectroscopy.
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48. J. Paldus, J. Čížek, Prog. Theor. Phys. (Kyoto) 42, 769 (1969)
49. J. Paldus, M. Takahashi, R.W.H. Cho, Phys. Rev. B 30, 4267 (1984)
50. M. Takahashi, J. Paldus, Phys. Rev. B 31, 5152 (1985)
51. F. Sondheimer, Proc. R. Soc. London A 297, 173 (1967)
52. F. Sondheimer, Acc. Chem. Res. 5, 81 (1972)
53. F. Sondheimer, Chimia 28, 163 (1974)
54. P.J. Gerratt, Aromaticity (Wiley, New York, 1986)
55. D. Lloyd, The Chemistry of Conjugated Cyclic Compounds. To Be or Not To Be Like Benzene?

(Wiley, New York, 1989)
56. H. Fukutome, Prog. Theor. Phys. (Kyoto) 40, 998–1227 (1968)
57. R.A. Harris, L.M. Falicov, J. Chem. Phys. 51, 5034 (1969) and references therein
58. D. Cazes, L. Salem, C. Tric, J. Polym. Sci. C 29, 494 (1974)
59. E. Vogel, H.D. Roth, Angew. Chem. Int. Ed. 3, 228 (1964)
60. R.M. McQuilkin, B.W. Metcalf, F. Sondheimer, Chem. Commun, 338 (1971)
61. F. Sondheimer, R. Wolovsky, Y. Amiel, J. Am. Chem. Soc. 84, 274 (1962)
62. F. Sondheimer, Y. Gaoni, J. Am. Chem. Soc. 84, 3520 (1962)

123


	Approximate symmetry-breaking in the independent particle model of monocyclic completely conjugated polyenes
	Abstract
	Introduction
	Hartree-Fock-Roothaan equations [28]
	Stability conditions
	Singlet and triplet stability conditions
	Model description
	Pariser-Parr-Pople (PPP) Hamiltonian [27]
	Model systems
	Some basic theorems
	Results and discussion
	C10H10 and C14H14 structures
	C18H18 and C22H22 structures
	Structures with N > 24
	Conclusions
	Acknowledgments
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


